Improving protein-ligand docking with flexible interfacial water molecules using SWRosettaLigand.

نویسندگان

  • Linqing Li
  • Weiwei Xu
  • Qiang Lü
چکیده

Computational protein-ligand docking is of great importance in drug discovery and design. Conformational changes greatly affect the results of protein-ligand docking, especially when water molecules take part in mediating protein ligand interactions or when large conformational changes are observed in the receptor backbone interface. We have developed an improved protocol, SWRosettaLigand, based on the RosettaLigand protocol. This approach incorporates the flexibility of interfacial water molecules and modeling of the interface of the receptor into the original RosettaLigand. In a coarse sampling step, SWRosettaLigand pre-optimizes the initial position of the water molecules, docks the ligand to the receptor with explicit water molecules, and minimizes the predicted structure with water molecules. The receptor backbone interface is treated as a loop and perturbed and refined by kinematic closure, or cyclic coordinate descent algorithm, with the presence of the ligand. In two cross-docking test sets, it was identified that for 8 out of 14, and 16 out of 22, test instances, the top-ranked structures by SWRosettaLigand achieved better accuracy than other protocols.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Docking with Ligand Attached Water Molecules

A novel approach to incorporate water molecules in protein-ligand docking is proposed. In this method, the water molecules display the same flexibility during the docking simulation as the ligand. The method solvates the ligand with the maximum number of water molecules, and these are then retained or displaced depending on energy contributions during the docking simulation. Instead of being a ...

متن کامل

Multi-body interactions in molecular docking: treatment of water molecules and multiple ligands

In the last years, the importance of water molecules in pose prediction experiments has been widely recognized and several approaches to integrate water molecules into the docking process have been proposed [1,2]. The inclusion of water molecules extends the classical two-body problem of docking a flexible ligand into a protein receptor to a multi-body docking problem as protein-ligand, protein...

متن کامل

Towards Ligand Docking Including Explicit Interface Water Molecules

Small molecule docking predicts the interaction of a small molecule ligand with a protein at atomic-detail accuracy including position and conformation the ligand but also conformational changes of the protein upon ligand binding. While successful in the majority of cases, docking algorithms including RosettaLigand fail in some cases to predict the correct protein/ligand complex structure. In t...

متن کامل

Docking Challenge: Protein Sampling and Molecular Docking Performance

Computational tools are essential in the drug design process, especially in order to take advantage of the increasing numbers of solved X-ray and NMR protein-ligand structures. Nowadays, molecular docking methods are routinely used for prediction of protein-ligand interactions and to aid in selecting potent molecules as a part of virtual screening of large databases. The improvements and advanc...

متن کامل

AutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking.

Water plays a significant role in the binding process between protein and ligand. However, the thermodynamics of water molecules are often underestimated, or even ignored, in protein-ligand docking. Usually, the free energies of active-site water molecules are substantially different from those of waters in the bulk region. The binding of a ligand to a protein causes a displacement of these wat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular modeling

دوره 21 11  شماره 

صفحات  -

تاریخ انتشار 2015